Getting started with TeeChart and MonoTouch

By Pep Jorge @joseplluisjorge | Steema Software | February 2013

Introduction

A few months ago Steema Software released a new TeeChart product called “TeeChart NET for
i0S”, and it is this that we will discuss in this article.

If you are a software developer using CSharp programming language and are thinking of porting
your applications to the iOS (iPhone and iPad) then for sure you've heard of MonoTouch.
MonoTouch allows you to create all kinds of applications from the MonoDevelop development
environment (installed on a machine with Apple OSX) using c #. If you don't already have
Monotouch you can download a trial version from www.xamarin.com.

TeeChart NET for iOS is a component library that allows programmers to add all kind of charts to
their applications easily. The component library is available with source code (CSharp native code)
or as a binary version. Both are adapted for use with MonoTouch.

The version of the product available on the website includes several coded examples to guide use,
but this article aims to show how to populate the Charts, in a few steps, getting the data from a
SQLite database, starting with a simple TeeChart example.

Using the TChart component with MonoTouch in a UlView

TChart is a data visualization control that creates a graphical representation of data. It can handle
high amounts of data, from a database if required. It supports many different series (display)
types; standard types like Line, Area, Bar, Pie, Gantt; professional 2D or 3D series types, like
Surface, TriSurface, Contour and indicators like Circular Gauges, Horizontal Indicators, and more..

We're going to start this tutorial showing the required steps in order to create a simple iPhone
application which will contain a basic Pie chart in an UlView. Then we’ll continue with another
example setting the chart series to source data from a database, specifically from a SQLite Table,
loading the data into the same Series.

Hopefully I should be able to show you how easy it is to include Charts in our applications.

Step 1 — Creating the Project :2

Open the MonoDevelop IDE, and create a "Single View Application from File -> New solution -> C #
-> MonoTouch -> iPhone -> Single View Application. We will give it a descriptive name (ie
"TChartWithMonoTouch") and click OK.

800 Nueva solucién

Recent E Proyecto vacio Single View Application
b C Single view application project for iPhone.
=G 5 Utility Application
ASP.NET
Mac E Ily'f_.aster—l)eta'll Application

Mac (open source}
Mono for Android
¥ MonoTouch
iPad
iPad Storyboard

m Single View Application
E '[abbed Application i
| 5 OpenGL Application

iPhone Storyboard
Universal
Universal Storyboar

MNUnit
(« T [
Nombre: [TChaJtWithMonoToum]
Ubicacién: [fu:;ers{pepjorge{PraJecls] []
Nombre de la solucién: [TCharmrﬂhMonoTouch I Create directory for solution

El proyecto serd guardado en [Users/pepjorge/Projects /TChartWithMonoTouch/
TChartWithMonoTouch

[Cancelar H Aceptar I

(Figure 1 — Creating new Project)

Once this is done we’ll see the Solution as in Figure 2. A ViewController with its XIB file will be
created automatically to represent the view. The XIB file will allow us to customize the UlView
through the XCode, by double clicking over the file, XCode will be opened automatically and the
designer will appear, but we’re going to skip this step as it’s not necessary for our purposes for the
moment :

Solucidn e
7 Solucién TChartWithMonoTouch
= [| TChartWithMonoTouch
b [E) Referencias
= Resources
| AppDelegate.cs
[} Info.plist
#] Main.cs
b] TChartWithMonoTouchViewController.cs
@| TChartWithMonoTouchViewController.xib

(Figure 2 —Project Solution)

Step 2 — Adding and configuring the TChart control :

In order to create the Chart control in our class controller the first thing to do is to add the "NET

TeeChart for i0S" library reference. Just do right click on "References" of the solution and select
"Edit references", go to the Net Assembly tab and add the library TeeChartlOS.dll which is included
into the installer. Then click OK.

8,00, Edit References.

Todo | Packages | projects | Nt Assemby | = Reterencas seeccionaas: 5

_./"| |m“ Steema“ TeeChartlOS ” sourcesl bin [fPhone ”jom] 4-r"'\ System
£ System.Xml

Lugares Nombre v Tamafio Madificado ‘3 Version=2.0.5.0, Culture=neutral, Public

'f“\ Buscar [Styles 22/11/2012 1;'? System.Core

® usados recientem... | [RE LG Le] 2,4MB 28/01/2013 | T i
£ monotouc|

[pepjorge g Version=0.0.0.0, Culture=neutra

[Escritorio

TeeChart!05.dll
m Slgtena disarchives /Steema TeeChartlDS [sources/bin/iPhon

Ensamblados | C
TeeChartlOS, Version=0.0.0.0, Culture=neutral

Cancelar l [Aceptar

(Figure 3 —Referencing to TeeChartlOS.dll)

Now that the TeeChart library is already referenced, open the
TChartWithMonoTouchViewController.cs controller file and add the "using" line of code, so we
can make use of all its objects, methods and properties.

using Steema.teeChart;

In the class define a new TChart control :

TChart chartl = new TChart();

We've also to define the a dimension for the object, we’ll do that into the ViewDidLoad() method,
and we’ll start defining a new Series type, Pie style for example:

// Specifing a Chart dimension

System.Drawing.RectangleF rect = new System.Drawing.RectangleF(0,0,320,460);
// Creating the Series type

Steema.TeeChart.Styles.Pie pie = new Steema TeeChart.Styles.Pie();

// Adding Series to the Chart

chartl.Series.Add(pie);

// Loading data to the Pie series, we can use Random data just to test
pie.FillSampleValues(4);

// or add specific values for the Series
pie.Add(10);
pie.Add(20);
pie.Add(390);
pie.Add(49);

// Now will be time to customize our Chart and Series, we could change a few
specific characteristics to change its aspect

// Setting Chart to 2D and hiding legend
chartl.Aspect.View3D=false;
chartl.Legend.Visible=false;

// Setting Pie series as Circular, and marks visible

pie.Circled=true;
pie.Marks.Visible=true;

As you can see, we can easily configure the chart in a few minutes.

Now it is time to embed the Chart into the main View of the application. The TChart Control
inherits from the UlView so it can be added as subview in any other views, while other controls
can be added to the chart.

View.AddSubView(chart);

Step 3 — Running the Application on Simulator and Device

Running the application we should get the following result :

Carrier 5 1:39 PM

(Figure 4 —Running the Project)

Adding DataBase functionality to the Project:

We now know how to create a chart, customize and display it on any view of our application. Let's
now give more functionality to the chart, for example we could create an application which gets
the data from a table of an SQLite database, the represented data from different customers will be
displayed in a list. Then, when clicking over a specific customer, the Chart series will refresh
automatically with new data, reflecting that data from the database.

We could try to use the same project we did before by changing a few lines of code.

Step 1 —Creating the SQLite DataBase and Tables :

The first thing to do is create our SQLite database and the two tables we need for our application.
There are several tools to manage SQLite databases, I'm going to use the addon that can be
installed in Firefox (through extensions):

Carpeta

{ TChartTestsqlitz 2 I Estructura

P Master Table (1}
v Tales @) TABLE Custorerlrvoices | Buscar

Ejecutar SQL Conf

| Afadir | | Duplicar | Editar | | Eliminar

¥ Customerinvoices rowid Custd

InvoiceNum

Quantity]

Ccustid [
InvoiceNum
Quantity

Custid

Name
> Views 0)
> Indexes (0
» Triggers ()

1

2 1]

3 1
¥ Customers a 1

5 2

3 2

<< < 1 para 6 de 6

>>

|so
|100
|25
|7s
|80
|110

(Figure 5 —Working with SQLite Manager)

We create our database that we will call "TChartTest", then the first table, which we will call

"Customers", which will include two Fields:

Custld of type integer
Name of type text(30)

The second table will call it “Customerinvoices”, and will contain the following Fields :

Custld of type integer
InvoiceNum of type integer
Quantity of type double

Once this is done, we’ll add some records with example data. By double-clicking over each table
(through the manager), it will allow us to edit, add or remove the records. We’re going to add the

following example data to the “Customers” table:

Custld Name

0 Nicole
1 John
2 Kate
3 James

And for the “Customerinvoices” table:

Custld InvoiceNum Quantity

0 0 50
0 1 100
1 0 25
1 1 75
2 0 80
2 1 110

Step 2 —Using the Table data in the Project:

First of all, what we need to know is that to be able to work with SQLite dataBases in our project,
we’ve to add a new Reference to the project, the Mono.Data.SQLite reference. You can add this by
right-clicking over the References -> Edit References, and select it from the list of available
references.

Now that all the data has been introduced, we save the dataBase to a file, which we’ve to add as a
part of our application by right-clicking over the Project solution-> Add Files.

We also have to right-click over the DataBase file (already added on our Project) and change the
action as “Content” via the Action-> Content option, this will make it part of the Project at
deployment time.

[Main.cs I e
b] TCha Abrir
[& TChal Abrir con >
Herramientas >
Control de versiones >

Abrir carpeta contenedora

Copiar ®C
Cortar BX
Quitar

Renombrar HR

|lista de ereares
(O BundleResource

Propiedades frecuentes
Propiedades

| © Compile

Opciones de visualizacién

() Content
() EmbeddedResource

O ITunesArtwork
O InterfaceDefinition
O None

(Figure 6 —Setting SQLite DataBase as content of project)

Once the dataBase is integrated in the Project, we can define a new small class (in the same
controller file) which will define the structure of the data we’ll use to store the information of the
items, that will be displayed at the UlTableView:

// Class to define the Items
public class ItemInfo

{
public int CustID { get; set; }
public string Name { get; set; }

public ItemInfo(int custId,string name)

{

CustID = custId; Name = name;

}

public override string ToString ()

{
return string.Format("[ItemInfo: Value={@}, Text={1}]", CustID, Name);

}
}

Step 3 —Adding the Chart and TableView objects to the View:

Let's prepare the principle view so that it shows a UlListView on half of the screen and the Chart
for the rest of it. We could use XCode to add the component UlListView to our View but as it's
quite a simple step | prefer to do it by code, it's quicker.

To start with, we modify the following initial project definitions inside the
TChartWithMonoTouchViewController class.

// Creating the Chart
public TChart chartl = new TChart();

// Creating the series type
public Steema.TeeChart.Styles.Bar bar;

// Creating the Table view list
public UITableView table;
public List<ItemInfo> tablelItems;

To populate data in a UlTableView and then update our chart by clicking on a Table Cell we need
to create a DataSource and Delegate classes for our TableView, we first create the controls and
assign its DataSource and Delegate within the ViewDidLoad method of our controller. We'll create
and define the TableSource and TableDelegate classes themselves later in our code.

At the same time we'll specify various properties of the Chart and Series that we'll use to display
the data from the DataBase (in this example Bar Series).

public override void ViewDidLoad ()

{
base.ViewDidLoad ();

// Adding the UITableView and items to the View
table = new UITableView(new RectangleF(0,0,320,190));

tableItems = new List<ItemInfo>();
table.DataSource = new TableSource(this);
table.Delegate = new TableDelegate(this);

View.AddSubview(table);
}

We already have the UlTableView in the main View, now let's add the chart at the bottom of the
view. Add the following piece of code within the method again into the ViewDidlLoad ():

// Setting the Chart dimension
System.Drawing.RectangleF rect = new System.Drawing.RectangleF(0,190,320,270);
chartl.Frame = rect;

// Setting automatic Zoom and Scroll to manual
chartl.Aspect.ZoomScrollStyle=Steema.TeeChart.Drawing.Aspect.ZoomScrollStyles.Ma
nual;

// Adding series to the chart
bar = new Steema.TeeChart.Styles.Bar();

// Some settings for the bar Series type

bar.BarStyle = Steema.TeeChart.Styles.BarStyles.Arrow;
bar.BarWidthPercent = 200;

bar.Marks.Style = Steema.TeeChart.Styles.MarksStyles.Value;
bar.ColorEach = true;

// Adding Bar series to the Chart
chartl.Series.Add(bar);

// Some more settings for the Chart
chartl.Aspect.View3D = false;
chartl.Legend.Visible = false;
chartl.Axes.Bottom.Title.Text = "Customer Invoices";
chartl.Axes.Left.AxisPen.Width = 1;
chartl.Axes.Left.Increment = 40;
chartl.Axes.Bottom.AxisPen.Width = 1;
chartl.Header.Text = "TeeChart NET for iOS";
chartl.Header.Font.Color = UIColor.Black.CGColor;
chartl.Panel.MarginTop = 0;
chartl.Walls.Back.Visible = false;

And finally add the Chart to the Main View as a subview:

View.AddSubview(chartl);

Step 4 —Creating the DataSource and Delegates for the Objects:

It's time to write our DataSource class for the TableView which we have assigned to our code
above. This will load the data from our table "Customers", we will use a simple code to connect to
our database, will execute our "select" and will return records to be introduced on our predefined
list:

// DataSource for the TableView
public class TableSource : UITableViewDataSource

private TChartWithMonoTouchViewController _controller;
string cellIdentifier = "TableCell";

public TableSource (TChartWithMonoTouchViewController controller)
{

_controller = controller;
_controller.tableItems = LoadCustomerList();

}
public override int RowsInSection (UITableView tableview, int section)
{
return _controller.tableItems.Count;
}

private List<ItemInfo> LoadCustomerList()

{
// Necessary code to connecto with SQLita Database
var conn = new SqliteConnection("Data Source=TChartTest.sqlite");
var list = new List<ItemInfo>();

// Here we’ll do the select and load data into the list
using (var cmd = conn.CreateCommand()

{
conn.Open();
cmd.CommandText = "select CustId,Name from Customers";
using(var reader = cmd.ExecuteReader())
{
while (reader.Read())
{
Int64 id = (Int64)reader["CustId"];
list.Add(new ItemInfo((int)id , (string)reader["Name"]));
¥
b
}
return list;
¥

}

..and now the Delegate class, that will be used when the user touches a Cell of the table, will
refresh the Chart showing the invoices of the selected customer:

// Delegate for the TableView
public class TableDelegate : UITableViewDelegate
{
private TChartWithMonoTouchViewController _controller;
public TableDelegate(TChartWithMonoTouchViewController controller)
{
// We need to pass the controller to the constructor in order to use it
later
_controller = controller;

}

public override void RowSelected(UITableView tableView, NSIndexPath indexPath)

{
LoadCustomerInvoices(_controller.tableItems[indexPath.Row].CustID);
// tableView.DeselectRow (indexPath, true); // normal iOS behaviour is to
remove the blue highlight

}

// This method load data from specific customer to the Chart series
private void LoadCustomerInvoices(int CustID)

{

var conn = new SqliteConnection("Data Source=TChartTest.sqlite");
using (var cmd = conn.CreateCommand())

{

_controller.bar.Clear();
conn.Open();

cmd.CommandText ="select InvoiceNum,Quantity from CustomerInvoices where
CustId="+CustID;
using(var reader = cmd.ExecuteReader())

while (reader.Read())

{
Double qt = (Double)reader["Quantity"];
_controller.bar.Add(qt, (string)reader["InvoiceNum"].ToString());

Step 5 —Running and Testing the Project:

If we’ve followed all the steps correctly, we just have to run the application and look at the result,
that should look like the following image :

Carrier 5

Nicol

e
]

TeeChart MET dar D5

Customer Invoices

4

(Figure 7 —Deploying the App)

Summary

You can download the solution here “TChartWithMonoTouch.zip” (The example does not include
the TeeChartlOS.dlIl which is required to run into the Simulator or Device, non-customers can go to
the Product downloads page in order to download the Eval version).

| hope this article has helped you get up and running with the TeeChart NET for iOS control with the use of MonoTouch.
If you have any questions or comments please feel free to contact us.

Copyright 2013 Steema Software SL. Copyright Information. e-mail : info@steema.com.

Privacy Policy All other brands and product names are trademarks or registered trademarks of their respective owners.

